• Users Online: 81
  • Print this page
  • Email this page
Year : 2021  |  Volume : 5  |  Issue : 1  |  Page : 35-38

Green synthesis of silver nanoparticles using Phyllanthus amarus Seeds and their antibacterial activity assessment

1 Centre for Drug Discovery and Development, Sathyabama Institute for Science and Technology (Deemed to be University), CA, USA
2 California University of Science and Medicine, School of Medicine; Musculoskeletal Disease Research Laboratory US Department of Veteran Affairs; Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California 92350, USA

Correspondence Address:
Dr. Jerrine Joseph
Scientist -D, Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai -600 119
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/bbrj.bbrj_139_20

Rights and Permissions

Background: Green synthesis of nanoparticles has been gaining popularity due to its advantages over chemical synthesis. In the present study, silver nanoparticles (AgNPs) were synthesized by using an aqueous solution of Phyllanthus amarus leaves extract as a reducing agent. The synthesized nanoparticles were characterized using the spectroscopic techniques. The Fourier-transform infrared (FTIR) study confirmed that the seed extract also stabilized the surface of the AgNPs by acting as a capping agent. Moreover, the antibacterial activity of the plant NPs was also assessed. The synthesized nanoparticles as well as P. amarus plant extract were separately tested to examine their antibacterial activities. The activities were tested against various microorganisms, including Escherichia coli, Bacillus subtilis, Klebsiella pneumoniae, and Staphylococcus aureus. The main aim of the present study is to evaluate the green synthesis of nanoparticles using P. amarus seeds and their antibacterial activity assessment. Method: Collection and preparation of seed extract, synthesis of AgNPs, characterization of AgNPs using ultraviolet-visible (UV-Vis) absorbance spectroscopy and Fourier transforms infrared spectroscopy, determination of antibacterial activity using pathogens. All in vitro assay data signify the mean ± standard deviation of triplicates was calculated by using the MS word document. Results: The reduction of silver nitrate using the plant leaf extract was viewed by the color change in the reaction solutions. The maximum absorbance peak was seen at 400 nm for P. amarus seed extract using UV-Vis spectroscopy and FTIR measurements were carried out for the AgNPs synthesized by the plant extracts. The extracts of P. amarus seeds showed potent antimicrobial activity against Gram-positive and negative bacteria. Conclusions: The biosynthesized AgNPs using P. amarus seed extract proved to be excellent agent against pathogens. The present study showed a simple, rapid, and economical route to synthesize AgNPs. The use of P. amarus has the added advantage that this seed can be used by nanotechnology processing industries.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded226    
    Comments [Add]    

Recommend this journal