• Users Online: 554
  • Print this page
  • Email this page
Year : 2017  |  Volume : 1  |  Issue : 2  |  Page : 129-133

Genotypic characterization of rpoB, katG and inhA gene of multi drug tuberculosis isolates from extra pulmonary tuberculosis

1 Department of Microbiology, All Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
2 Department of Pulmonary Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
3 Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India

Correspondence Address:
Anand Kumar Maurya
Department of Microbiology, All India Institute of Medical Sciences, Bhopal - 462020, Madhya Pradesh
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/bbrj.bbrj_57_17

Rights and Permissions

Background: Multidrug-resistant tuberculosis (MDR-TB) has appeared public health concern worldwide. Circulating of drug resistance strains is rising problem in MDR-TB among extra pulmonary TB (EPTB) cases. The objective of this study was to the genotypic characterization of MDR-TB isolates from EPTB and correlate with a phenotypic MDR-TB pattern in this region. Methods: This was study conducted prospectively manner. One hundred and sixty-four M. tuberculosis complex isolates were processed for first-line phenotypic drug susceptibility testing to rifampicin, isoniazid (INH), streptomycin, and ethambutol. Phenotypic confirmed MDR-TB strains were further characterized by gene sequencing for genotypic analysis of rpoB, katG, and inhA. Results: Among 164 MTBC strains, 39.1% of strains were resistant to first-line antitubercular drugs, and 13.4% were MDR-TB along with EPTB cases. In one strain, katG and inhA gene were absent in sequencing analysis. S531 L (61.9%) and S315T (71.4%) mutations were the most predominant mutation in MDR-TB isolates among EPTB cases. Conclusion: Molecular drug resistance testing allows to improved diagnosis, reduces the risk of additional resistance and effective treatment of drug resistance TB. Molecular DST testing can help in the detection for MDR-TB which helps in the prompt initiation of effective antitubercular therapy.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded243    
    Comments [Add]    

Recommend this journal